
Algorithms & Data Structure I

Syrian Private University

Instructor: Dr. Mouhib Alnoukari

The Role of Algorithms in
Computing

Algorithms as a technology, introduction to algorithms

? Algorithms as a Technology

Algorithms as a Technology

Suppose computers were infinitely fast and computer
memory was free. Would you have any reason to study

algorithms?

YES

You would still like to demonstrate that your solution method
terminates and does so with the correct answer.

• Computers may be fast, but they are not infinitely fast.
• Memory may be inexpensive, but it is not free.
• Computing time is therefore a bounded resource, and so is space in memory.
• You should use these resources wisely, and algorithms that are efficient in terms of

time or space will help you do so.

Algorithms Efficiency

• Different algorithms devised to solve the same
problem often differ dramatically in their
efficiency.

• These differences can be much more
significant than differences due to hardware
and software.

Algorithms Efficiency - Example

• Two algorithms for Sorting:

1. insertion sort: takes time roughly equal to
c1n2 (Where c1 is a constant that does not depend on n).

2. merge sort: takes time roughly equal to

c2 n lg n (Where c2 is another constant that does not

depend on n).

Insertion sort typically has a smaller constant factor than merge sort, so

that : c1 < c2

Insertion sort: c1n.n merge sort: c2n.lg n

Algorithms Efficiency - Example

Insertion sort: c1n.n merge sort: c2n.lg n
Factor of n in its running time Factor of lg n in its running time

n=1000 lg n = 10

n=1.000.000 lg n = 20

Algorithms Efficiency - Example

Insertion sort: c1n.n merge sort: c2n.lg n
Sorting Array 10.000.000 number (80 MB)

Computer A (faster) Computer B (slower)
10 billion instruction/second ! 10 million instruction/second

2 n2 instructions to sort n numbers 50n lg n

20.000 s (# 5.5 hours) 1163 s (# 20 minutes)

17 times faster

Sorting Array 100.000.000 number (800 MB)
23 days # 4 hours

? Introduction to Algorithms

Overall Picture

• This course is not about:
– Programming languages

– Computer architecture

– Software architecture

– Software design and implementation principles
• Issues concerning small and large scale programming

• We will only touch upon the theory of complexity
and computability

11

History

• Name: mathematician Mohammed al-
Khowarizmi, in Latin became Algorismus

• First algorithm: Euclidean Algorithm, greatest
common divisor, 400-300 B.C.

• 19th century – Charles Babbage, Ada Lovelace.

• 20th century – Alan Turing, Alonzo Church,
John von Neumann

12

Algorithmic problem

– Infinite number of input instances satisfying the
specification. For example:

• A sorted, non-decreasing sequence of natural numbers.
The sequence is of non-zero, finite length:

– 1, 20, 908, 909, 100000, 1000000000.

– 3.

Specification
of input

?
Specification
of output as
a function of
input

13

Algorithmic Solution

– Algorithm describes actions on the input instance

– Infinitely many correct algorithms for the same
algorithmic problem

Input instance,
adhering to
the
specification

Algorithm Output
related to
the input as
required

14

Sort

Example: Sorting

INPUT
sequence of numbers

a1, a2, a3,….,an
b1,b2,b3,….,bn

OUTPUT
a permutation of the

sequence of numbers

2 5 4 10 7 2 4 5 7 10

Correctness

For any given input the algorithm

halts with the output:

• b1 < b2 < b3 < …. < bn

• b1, b2, b3, …., bn is a

permutation of a1, a2, a3,….,an

Running time

Depends on

• number of elements (n)

• how (partially) sorted

they are

• algorithm

15

Insertion Sort

A
1 nj

3 6 84 9 7 2 5 1

i

Strategy

• Start “empty handed”

• Insert a card in the right

position of the already sorted

hand

• Continue until all cards are

inserted/sorted

for j=2 to length(A)

do key=A[j]

“insert A[j] into the

sorted sequence A[1..j-1]”

i=j-1

while i>0 and A[i]>key

do A[i+1]=A[i]

i--

A[i+1]:=key

16

Insertion Sort - Example

A 5 4 62 1 3
Example

for j=2 to length(A)

do key=A[j]

“insert A[j] into the

sorted sequence A[1..j-1]”

i=j-1

while i>0 and A[i]>key

do A[i+1]=A[i]

i--

A[i+1]:=key

17

Analysis of Algorithms

• Efficiency:

– Running time

– Space used

• Efficiency as a function of input size:

– Number of data elements (numbers, points)

– A number of bits in an input number

18

The RAM model

• Very important to choose the level of detail.

• The RAM model:

– Instructions are executed one after another, with
no concurrent operations.

– Instructions (each taking constant time):

• Arithmetic (add, subtract, multiply, etc.)

• Data movement (assign)

• Control (branch, subroutine call, return)

– Data types – integers and floats

19

Analysis of Insertion Sort

for j=2 to length(A)

do key=A[j]

“insert A[j] into the

sorted sequence A[1..j-1]”

i=j-1

while i>0 and A[i]>key

do A[i+1]=A[i]

i--

A[i+1]:=key

cost (time)

c1
c2
0

c3
c4
c5
c6
c7

times

n

n-1

n-1

n-1

n-1

2

n

jj
t


2
(1)

n

jj
t




2
(1)

n

jj
t




• Time to compute the running time as a
function of the input size

input size: number of items in the input.
running time: the number of primitive operations or “steps” executed.

tj: number of times the while loop is executed for that value of j.
Ci: a constant denotes the execution time of the ith line.

20

Analysis of Insertion Sort – Best Case

T (n) : the running time of Insertion Sort

Best case: elements already sorted  tj=1,

For each j = 2,3 … n, we then find that A[i] <= key in line 5 when i has its initial value of
j - 1. Thus tj = 1 for j = 2,3 … n, and the best-case running time is:

T(n) = a n + b  linear time

21

Analysis of Insertion Sort – Worst Case

T (n) : the running time of Insertion Sort

Worst case: elements in reverse sorted order  tj=j,

We must compare each element A[j] with each element in the entire sorted subarray A
[1..j-1]  tj=j

T(n) = a n2 + b n + c  quadratic function

22

Best/Worst/Average Case

• Best case: elements already sorted  tj=1,
running time = f(n), i.e., linear time.

• Worst case: elements are sorted in inverse
order
 tj=j, running time = f(n2), i.e., quadratic
time

• Average case: tj=j/2, running time = f(n2), i.e.,
quadratic time

23

Best/Worst/Average Case (2)

– For a specific size of input n, investigate running
times for different input instances:

1n

2
n

3n

4n

5n

6n

24

Best/Worst/Average Case (3)

– For inputs of all sizes:

1n

2
n

3n

4n

5n

6n

Input instance size

R
u

n
n

in
g

ti
m

e

1 2 3 4 5 6 7 8 9 10 11 12 …..

best-case

average-case

worst-case

25

Best/Worst/Average Case (4)

• Worst case is usually used:
– It is an upper-bound and in certain application

domains (e.g., air traffic control, surgery) knowing
the worst-case time complexity is of crucial
importance

– For some algorithms worst case occurs fairly often

– The average case is often as bad as the worst case

– Finding the average case can be very difficult

26

That’s it?

• Is insertion sort the best approach to sorting?

• Alternative strategy based on divide and
conquer

• MergeSort
– sorting the numbers <4, 1, 3, 9> is split into

– sorting <4, 1> and <3, 9> and

– merging the results

– Running time f(n log n)

? Divide and Conquer

Merge Sort

September 17, 2001

Divide and Conquer

• Divide and conquer method for algorithm
design:
– Divide: If the input size is too large to deal with in

a straightforward manner, divide the problem into
two or more disjoint subproblems

– Conquer: Use divide and conquer recursively to
solve the subproblems

– Combine: Take the solutions to the subproblems
and “merge” these solutions into a solution for
the original problem

September 17, 2001

MergeSort: Algorithm

• Divide: If S has at least two elements (nothing needs
to be done if S has zero or one elements), remove all
the elements from S and put them into two
sequences, S1 and S2 , each containing about half of
the elements of S. (i.e. S1 contains the first n/2
elements and S2 contains the remaining n/2
elements.

• Conquer: Sort sequences S1 and S2 using MergeSort.

• Combine: Put back the elements into S by merging
the sorted sequences S1 and S2 into one sorted
sequence

September 17, 2001

Merge Sort: Algorithm

Merge-Sort(A, p, r)

if p < r then

q(p+r)/2

Merge-Sort(A, p, q)

Merge-Sort(A, q+1, r)

Merge(A, p, q, r)

Merge(A, p, q, r)

Take the smallest of the two top most elements of

sequences A[p..q] and A[q+1..r] (they are in sorted

order) and put into the resulting sequence. Repeat

this, until both sequences are empty. Copy the

resulting sequence into A[p..r].

A: An array,

p, q, r: indices into the array where p<=q<r.

September 17, 2001

Merge Sort: Algorithm

September 17, 2001

Merge Sort: Algorithm

September 17, 2001

MergeSort (Example) - 1

September 17, 2001

MergeSort (Example) - 2

September 17, 2001

MergeSort (Example) - 3

September 17, 2001

MergeSort (Example) - 4

September 17, 2001

MergeSort (Example) - 5

September 17, 2001

MergeSort (Example) - 6

September 17, 2001

MergeSort (Example) - 7

September 17, 2001

MergeSort (Example) - 8

September 17, 2001

MergeSort (Example) - 9

September 17, 2001

MergeSort (Example) - 10

September 17, 2001

MergeSort (Example) - 11

September 17, 2001

MergeSort (Example) - 12

September 17, 2001

MergeSort (Example) - 13

September 17, 2001

MergeSort (Example) - 14

September 17, 2001

MergeSort (Example) - 15

September 17, 2001

MergeSort (Example) - 16

September 17, 2001

MergeSort (Example) - 17

September 17, 2001

MergeSort (Example) - 18

September 17, 2001

MergeSort (Example) - 19

September 17, 2001

MergeSort (Example) - 20

September 17, 2001

MergeSort (Example) - 21

September 17, 2001

MergeSort (Example) - 22

September 17, 2001

MergeSort (Example - 2)

September 17, 2001

Recurrences

• Recursive calls in algorithms can be described
using recurrences

• A recurrence is an equation or inequality that
describes a function in terms of its value on
smaller inputs

• Example: Merge Sort

(1) if 1
()

2 (/ 2) () if 1

n
T n

T n n n

 
 

 

57

Binary search

left=1

right=length(A)

do

j=(left+right)/2

if A[j]==q then return j

else if A[j]>q then right=j-1

else left=j+1

while left<=right

return NIL

 Idea: Divide and conquer, one of the key design
techniques

58

Example 2: Searching

INPUT
• sequence of numbers (database)

• a single number (query)

a1, a2, a3,….,an; q
j

OUTPUT
• an index of the found

number or NIL

2 5 4 10 7; 5 2

2 5 4 10 7; 9 NIL

59

Searching (2)

j=1

while j<=length(A) and A[j]!=q

do j++

if j<=length(A) then return j

else return NIL

 Worst-case running time: f(n), average-case:
f(n/2)

 We can’t do better. This is a lower bound for the
problem of searching in an arbitrary sequence.

60

Example 3: Searching

INPUT
• sorted non-descending sequence

of numbers (database)

• a single number (query)

a1, a2, a3,….,an; q
j

OUTPUT
• an index of the found

number or NIL

2 4 5 7 10; 5 2

2 4 5 7 10; 9 NIL

61

Binary search – analysis

• How many times the loop is executed:

– With each execution its length is cult in half

– How many times do you have to cut n in half to
get 1?

– lg n

